
Physics Tutorial 3: Constraints

Summary

In this lecture we explore the concepts of Constraints. First, we discuss some simple physical interac-
tion examples, to frame the concept of a Constraint. We introduce the Constraint as a general basis
for physical interactions. We explore the possibility of driven Constraints such as motors and finally
we discuss the calculation of the value for λ.

New Concepts

Sphere-Sphere Interfaces, Axis-Aligned Bounding Box interfaces, Sphere-Plane Interfaces, Application
of Constraints in 1 Dimension, Application of Constraints in 3 Dimensions, Adding Energy to the
System, Calculation of Lambda

Introduction

In the previous lecture we introduced the idea of numerical integration as a means of governing move-
ment within our system. In this lecture, we explore how the variables which inform our calculus can
be derived through a concept known as a constraint.

To start with, we’ll discuss some simplistic physical interactions. This helps get the idea into our
heads of how a physical system can be constrained. We’ll then undertake a mathematical exploration
of the 1D case of a constraint, which is the simplest case, before moving on to a more detailed con-
sideration of the 3D case (which is what our physics engine is intended to solve).

In the real world, it is fair to assume that constraints cannot inject energy into a system - energy
can be neither created nor destroyed. But this isn’t the real world, and we do have the option of
designing a constraint which adds or removes energy from the system. In fact, due to cumulative
errors (discussed in lecture 2), we don’t really have an option at all - we have to do it. We’ll discuss
this today, also.

1

After that, we’ll consider the mathematics behind the calculation of λ. Understanding this helps
greatly with the understanding of a constraint-based physics engine. After discussing the mathematics,
we’ll go through a worked example, making reference to the functions provided in the downloadable
framework.

Simple Interactions

Previously, we asserted that one of the core functions of a physics engine was to detect collisions -
more appropriately, interfaces - of items within our environment. Axiomatically, the simpler an item’s
shape, the fewer computations are required to determine if it has collided with another object.

As such, we will often simplify the shape of our items when we consider interface checks. This is
especially true if we are using an interface check for a purpose other than physics. An aggro-range
check in an MMOG, for example, is simply a check to see if the player avatar’s location has interfaced
with an NPC’s region of awareness (ususally a sphere or circle).

Some fairly simple examples of interface detection are discussed in this tutorial, before we tie them
into the idea of constraints.

Sphere-Sphere Interactions

The simplest approach to interface detection is to represent each object as a sphere centred on the
object’s position vector, and to calculate whether the two spheres intersect.

The algorithm to detect whether two spheres intersect is very straightforward. If the distance
between the centres of the two spheres is less than the sum of the radii of the two spheres, then an
intersection has occurred: As the simulation knows the location of the centre of the spheres, we use
Pythagoras’ theorem to calculate the distance between them, and compare the results to the sum of
the radii. So an intersection has occurred if

d < r1 + r2

where
d =

√
(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2

However, a square root is an expensive thing to compute, so usually the comparison will be between
the square of d and the square of the sum of the radii. So an intersection has occurred if:

d2 < (r1 + r2)2

2

where
d2 = (x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2

The collision response data is also straightforward to calculate; indeed most of the work has already
been done in the detection algorithm. The contact point P is on the vector which connects the centre
of the two spheres, which is also the normal vector N , while the penetration distance p is simply the
difference between the sum of the radii and the distance between the sphere centres (S1 and S2).

p = r1 + r2 − d

N = |S1 − S2|

P = S1 −N(r1 − p)

In C++, the sphere-sphere collision test might be written:

1 bool SphereSphereInterface (PhysicsObject* obj1 ,

2 PhysicsObject* obj2 , CollisionShape* shape1 ,

3 CollisionShape* shape2)

4 {

5 // Check that both shapes are Spheres

6

7 SphereCollisionShape* sphere1 =

8 dynamic_cast <const SphereCollisionShape *>(shape1);

9 SphereCollisionShape* sphere2 =

10 dynamic_cast <const SphereCollisionShape *>(shape2);

11

12 if (sphere1 == NULL || sphere2 == NULL)

13 {

14 return false ; //At least one object isn’t a sphere!

15 }

16

17 // Sphere -Sphere Check

18 float sum_radius = sphere1 ->GetRadius () + sphere2 ->GetRadius ();

19 float sum_radius_squared = sum_radius * sum_radius ;

20

21 Vector3 ab = obj2 -> GetPosition () - obj1 -> GetPosition ();

22 float distance_squared = Vector3 ::Dot(ab ,ab);

23

24 return (distance_squared <= sum_radius_squared);

25 // True if distance between centre points is less or equal

26 // to the sum of the two radii

27 }

Sphere–Sphere Interface

The collision detection algorithm does not use the square root; it compares the squares of the
two distances which is much faster. It is only after a collision has been detected that, depending on
our approach to collision resolution (discussed in a future tutorial) we may need to call on the more
computationally expensive square root. Most calls to the interface detection routine will result in a
false result (i.e. no intersection has occurred); it is only the rare case of a positive result (i.e. an
intersection) which then triggers the more expensive collision data calculation.

Axis-Aligned Bounding Box

The axis-aligned bounding box (AABB) method is also straightforward. It is typically used as a high
level collision test to decide whether it is worthwhile continuing with a more complex test, or to trigger
a piece of game logic. Each simulated object is represented as a bounding box aligned with the axes
of the world, so each collision object has a position, as well as a height, width and length.

3

The axes are considered in turn, and if there is an overlap of all three axes then an intersection
has occurred. An overlap along a particular axis has happened if the distance between the centres
of the two boxes on that axis is less than half the sum of the boxes’ lengths along that axis. So an
intersection has occurred if all three of these conditions is met:

|x2 − x1| <
1

2
(w1 + w2)

|y2 − y1| <
1

2
(h1 + h2)

|z2 − z1| <
1

2
(l1 + l2)

Importantly, as soon as one of these checks fails, the algorithm can bail out as there can’t possibly
be an intersection unless there is overlap in all three axes.

This is a very cheap collision detection algorithm, as the mathematics is very straightforward (only
additions and subtractions). However it is very limited – in particular the bounding boxes need to
be axis-aligned, so they can not rotate as the object they represent moves around the world. Also
the collision response data is not generated by the algorithm. Consequently this algorithm tends to
be used only when we need a quick binary decision on whether a collision is likely, before moving
on to a more complex collision detection algorithm, or making a high-level game logic decision, such
as detecting when the player has entered a new region of the world, or some game logic needs to be
triggered by an invisible bounding box.

Sphere-Plane Collision

Surfaces within the environment are most efficiently simulated as planes in the physics engine. Hence
a simple physics simulation of a game would entail representing the game objects as spheres, and the
surfaces of the environment (floors, walls, etc) as planes. We therefore require a method for detecting
when a sphere has intersected a plane. You will recall from the tutorial on frustum culling, that the
plane equation can be used to calculate how far a point is from an infinite plane. Obviously if this
distance is less than the radius of a sphere, then the sphere intersects the plane.

The plane equation is:
Ax+By + Cz +D = 0

where (A,B,C) is the normal to the plane, D is the distance of the plane from the origin, and (x, y, z)
is the position of the test point.

Consequently, a sphere at position S of radius r, intersects a plane with normal N at distance d
from the origin if

N.S − d < r

4

where N.S is the dot product of N and S. Note that N is a normal and therefore must be of length
1 (i.e. a unit vector), whereas S is simply the position of the centre of the sphere (ie the vector from
the origin to the sphere’s centre) and therefore not a unit vector.

The penetration p is simply the difference between the radius and the distance between the sphere
centre and the plane. The collision normal is the normal of the plane. The contact point P is
calculated by taking the sphere position, and adding a vector along the direction of the normal equal
to the distance between the sphere centre and the plane. Mathematically:

p = r − (N.S − d)

P = S −N(r − p)

The plane equation is based on testing for intersection with an infinite plane. Of course, even a
simple game environment can’t be represented exclusively by infinite planes - but every object in a
game environment can be represented by a collection of finite planes.

It is important to understand plane intersection, as it lays the foundations for the advanced, narrow
phase checks we will explore in the next couple of tutorials. The algorithms discussed there will give
you some insight into the complexities involved in handling physics for irregular objects, and hopefully
encourage you to explore the domain further.

1 bool SpherePlaneInterface (Vector3 &position , float radius)

2 {

3 if(Vector3 ::Dot(position ,normal) + distance <= -radius)

4 {

5 return false ;

6 }

7 return true ;

8 }

Sphere–Plane Interface

Relevance

These interface detection algoriths are all related to a constraint upon our system, if we assume that
a positive result (i.e., an intersection) should be impossible. If two balls should not be able to oc-
cupy the same space at the same time within our physical simulation, a constraint upon the system
is that distance d between their centres should always be equal to or greater than the sum of their radii.

As such, when we are resolving motion within our system, rather than constraints telling us what
must happen, they tell us what mustn’t happen, and everything else is assumed to come out in the
wash so long as our calculus is accurate. We should remember, we don’t need our simulation to be
accurate, it just needs to be accurate enough to be believable.

5

Constraints

So having discussed some very specific examples of constraints, let us consider the constraint as a
more general concept.

Simple 1D problem

Consider a simple 1D example. Suppose we restrict ourselves to a single axis and we define the
constraint:

C(x, y) = 1
2 ((x− y)2 − L2)

This constraint will maintain a constant distance between the variables x and y of length L. To resolve
our constraint, we need to find the Jacobian: this is the key to maintaining the distance constraint
between x and y. We find the Jacobian of this constraint by applying the multivariate chain rule,
which in this case is of the form:

dC

dt
=
∂C

∂x

dx

dt
+
∂C

∂y

dy

dt

Two factors of this expression are elements of the vector V, namely dx/dt = ẋ and dy/dt = ẏ. The
other two factors can be calculated as:

∂C

∂x
= x− y

∂C

∂y
= (−1)(x− y)

Replacing these factors in the original expression we get:

dC

dt
= (x− y)

dx

dt
+ (−1)(x− y)

dy

dt

or in dot notation this is written:

Ċ = (x− y)ẋ+ (−1)(x− y)ẏ

Now by comparing coefficients of ẋ and ẏ we can determine the Jacobian. In this example we only
consider two variables and the equation we are comparing against is of the form:

Ċ = j1ẋ+ j2ẏ =
(
j1 j2

)(ẋ
ẏ

)
This means that the Jacobian in this example is of the form:

J =
(
x− y y − x

)
The constraint force will be of the form:

F =

(
x− y
y − x

)
λ

for some value of λ. Notice that this force is proportional to the distance between the two points x
and y but equal and opposite for each object. This means that Newtons laws of motion are satisfied.
The justification for this will be explored in a future lecture. Later we will see that the constant λ is
dependent on velocity and therefore a constant force will not be applied to the two objects.

Full 3D problem

Now that we have gone through the 1D example we can generalize this to 3D. Figure 1 shows a
diagram of two boxes connected at points x1 attached to box 1 and x2 attached to box 2. We also
highlight the relative vectors r1 and r2. These two vectors are the relative positions of x1 and x2 with
respect to the centre’s of gravity p1,p2 of their own boxes.

The two relative vectors are useful as substitutions. By using the substitution x1 = p1 + r1 and
x2 = p2 + r2 we can simplify the portions of the maths which depend on rotating vectors with their
quaternion representing orientation. We can calculate the derivatives of x1,x2 to be:

6

p1

p2

x1

x2

r1

r2

d

Figure 1: Two boxes connected by a distance constraint at x1 and x2.

dx1

dt
= v1 + ω1 × r1

dx2

dt
= v2 + ω2 × r2

We define the distance constraint C as:

C(x1,q1,x2,q2) = 1
2 ((x2 − x1)2 − L2)

With this expression for the constraint, as was in the last example, the expression is zero when the two
points x1 and x2 are a distance L apart. We could apply a square root to each term of the equation
to give the constraint the true euclidean distance between the two points, however the current form
is much easier to calculate the derivative of. When we differentiate with respect to time and use the
derivatives we discussed earlier we get:

Ċ = (x2 − x1) · (v2 + ω2 × r2 − v1 − ω1 × r1)

The entire expression is dotted with the vector d = x2 − x1. We can use the vector d to simplify the
expression. We can also use a vector identity A · B × C = C · A × B to rearrange the equation such
that:

Ċ = −d · v1 +−(r1 × d) · ω1 + d · v2 + (r2 × d) · ω2

We now have the constraint equation in a form where we can read off the coefficients of v1, ω1, v2

and ω2 by comparing with:
Ċ = j1 · v1 + j2 · ω1 + j3 · v2 + j4 · ω2

We now see that we can rewrite this as:

Ċ = JV =
(
−dT −(r1 × d)T dT (r2 × d)T

)
v1

ω1

v2

ω2

and therefore our value for the Jacobian J is:

J =
(
−dT −(r1 × d)T dT (r2 × d)T

)
Adding Energy & Motors

So far we have restricted Constraints such that they cannot add energy to the system. A simple
modification to the constraint formulation allows us to introduce simple or repetitive motion to the
system. We introduce a vector function ζ and set it equal to Ċ giving:

Ċ = JV = ζ

7

Using this formulation we can simulate a simple motor set up. The vector ζ is called a bias vector
and can depend on position, angle and time. We can also use the bias vector to introduce and remove
energy from the system allowing us to correct errors which enter the system over time.

We can introduce a correction factor with the equation:

Ċ = JV = −βC

the corrective factor of −βC will push objects back towards zero as time passes in the simulation as
long as the constant β > 0. We will discuss this corrective factor in more detail in lecture 10.

Forces & λ

In this lecture, we have introduced the force vector F in terms of the Jacobian J and a constant λ:

F = JTλ

We wish to calculate a value of λ which will correctly balance forces needed to fulfil the constraint C.
We start by considering Newtons second law of motion f = ma. When applied to this system we get
a vector equivalent where:

F = MV̇

In this equation V̇ is the acceleration equivalent of V and M is a matrix which defines the distribution
of mass throughout the entire system:

M =

m1 0 0 0
0 I1 0 0
0 0 m2 0
0 0 0 I2

where m1 and m2 are the masses for objects 1 and 2, and I1 and I2 are the inertial tensors for objects
1 and 2. Note that the inertial tensors occupy several rows and columns of the matrix.

Now consider a small change in the velocity vector V. We can numerically approximate the
acceleration vector V̇ by the change in V over a time step ∆t:

V̇ ≈ V2 −V1

∆t

Multiplying by the mass matrix M we can re-write this as:

MV̇ = F = JTλ = 1
∆tM(V2 −V1)

Since the matrix M is made up of invertible parts (m1, m2, I1 and I2) that means that M is invertible
and we can calculate M−1. If we multiply by JM−1 and use the equation JV = ζ to replace the JV2

term we get:

JM−1JTλ =
ζ − JV

∆t

Which can be re-arranged to get an equation for λ:

λ =
ζ − JV

JM−1JT ∆t

It should be noted that this is actually slightly simplified. There are more exhaustive explorations
of the mathematics which underpin the calculation of λ available online, but this satisfies our purposes.
We now move on to a worked example, outlining how we go about solving this in the physics framework.

8

Practical Computation of Velocity Update

Consider the example in Figure 2. Two objects, A and B, are connected by a distance constraint (the
dashed line) along direction x. pA and pB are their respective centres, and rA and rB are the vectors
connecting those centres to the point on their surfaces where the constraint exists, indicated by grey
triangles.

Figure 2: Example Constraint

We declare a class DistanceConstraint, which inherits from constraint. We’ll work our way through
aspects of this class, at each stage linking back to the diagram, so as to illustrate the computations
involved. Naturally, the class is illustrative, and you are free to implement your own interpretation
of the distance constraint; the complete code for DistanceConstraint.h is included at the end of the
tutorial.

The Jacobian

1 Vector3 ab = globalOnB - globalOnA;

2 Vector3 abn = ab;

3 abn.Normalise ();

4

5 Vector3 r1 = (globalOnA - objA ->GetPosition ());

6 Vector3 r2 = (globalOnB - objB ->GetPosition ());

7

8 this ->j1 = -abn;

9 this ->j2 = Vector3 :: Cross(-r1 , abn);

10 this ->j3 = abn;

11 this ->j4 = Vector3 :: Cross(r2 , abn);

12 this ->b = 0.0f;

13

14 this ->distance = ab.Length ();

Jacobian

This portion of the code is computing the Jacobian. Linking the variables back to our diagram,
pA and pB are the position properties of the objects. The grey triangles are defined as globalOnA

and globalOnB for objects A and B respectively, and used to compute r1 and r2.

The Vector3 which defines the constraint (the dashed line on our diagram) is denoted ab, and the
normalised vector defining its direction, x, is stored as abn. The next few lines define the elements of
our Jacobian.

We recall that the Jacobian takes the form (v1, ω1,v2, ω2). The first and third elements contain
the linear components of our Jacobian. As the direction of the constraint is from A to B, the linear

9

component of the Jacobian with respect to A is the negative of that direction (-abn, or −x); the linear
component with respect to B, conversely, is abn, or x. Directionality of the constraint also determines
the sign of the cross product which defines the second and fourth (angular) elements of the Jacobian.

We can overlook b for now - this relates to the Baumgarte constant, which you’ll experiment with
as part of your practical tasks for today. The distance between the points of connection is merely
the length of the vector (the dashed line).

Constraint Mass

From this point on, we discuss all physical parameters relating to the constraint (mass, velocity, etc.)
in terms of their magnitude along the Jacobian directions (j1, j2, j3, j4). The next step in the
process is to compute the Constraint Mass of our constraint. We define this as a float (a scalar),
and compute it using the function below:

1 float constraint_mass = objA ->GetInverseMass () * Vector3 ::Dot(j1 , j1)

2 + Vector3 ::Dot(j2 , (objA ->GetInverseInertia () * j2))

3 + objB ->GetInverseMass () * Vector3 ::Dot(j3 , j3)

4 + Vector3 ::Dot(j4 , (objB ->GetInverseInertia () * j4));

Constraint Mass

This function employs the inverse mass and inverse inertia of each object in turn. You can see how
each maps to the elements of the Jacobian (the inverse mass of Object A to the linear component of
the Jacobian with respect to Object A, etc.).

Differentiated Constraint (Ċ)

We’re reminded at Ċ is the product of the Jacobian and the Velocity Vector V. We obtain this by
summing the dot products of the vector components (remembering that each component is a vector
itself!). This value is held in float jv.

1 float jv = Vector3 ::Dot(j1 , objA ->GetLinearVelocity ())

2 + Vector3 ::Dot(j2 , objA ->GetAngularVelocity ())

3 + Vector3 ::Dot(j3 , objB ->GetLinearVelocity ())

4 + Vector3 ::Dot(j4 , objB ->GetAngularVelocity ());

Cee–Dot

Lambda (λ)

Having gone through the above steps, the computation to obtain λ is relatively simple: we divide -jv

by the constraint mass. Again, b is present, but in this example it is set to 0.0f and won’t impact
the simulation. The code is included below:

1 float denom = -(jv + b);

2 float lambda = denom / constraint_mass;

Lambda

10

Updating Velocity

And, having gone through all of that, we are now in a position to update the velocities (both linear
and angular) of our objects. Again, we employ the elements of the Jacobian, as these elements define
the relationship between our constraint and the physical properties of our objects. The result looks
something like this:

1 objA ->SetLinearVelocity(objA ->GetLinearVelocity ()

2 + (j1 * lambda) * objA ->GetInverseMass ());

3 objA ->SetAngularVelocity(objA ->GetAngularVelocity ()

4 + objA ->GetInverseInertia () * (j2 * lambda));

5 objB ->SetLinearVelocity(objB ->GetLinearVelocity ()

6 + (j3 * lambda) * objB ->GetInverseMass ());

7 objB ->SetAngularVelocity(objB ->GetAngularVelocity ()

8 + objB ->GetInverseInertia () * (j4 * lambda));

Update Velocity Pseudocode

And there we have it - a step by step walkthrough of our constraint-based solver.

Implementation

Below you have all the code needed to implement a distance constraint in your engine. Note that this
code sample is more simplified than the step-by-step walkthrough above, with the formation of the
Jacobian kept abstract. Review and implement the code snippet below, and look at the remaining
practical exercises for Day 2 in the Practical Tasks handout.

Summary

We have explored the application of constraints to actual physical problems. We have investigated
the addition of energy to our system via constraints, before stepping through a worked example in
code of a constraint-based solver relating to distance.

1 PhysicsEngine :: UpdatePhysics ()

2 {

3 //A whole physics engine in 6 simple steps =D

4 //1. Broadphase Collision Detection (Fast and dirty)

5 //2. Narrowphase Collision Detection (Accurate but slow)

6 //3. Initialize Constraint Params (precompute elasticity/baumgarte

7 // factor etc)

8

9 for (Constraint* c : constraints) c->PreSolverStep(updateTimestep);

10

11 // Optional pre -computation step , needed for some constraints

12

13 //4. Update Velocities

14 //5. Constraint Solver Solve for velocity based on external

15 // constraints

16

17 for (Constraint* c : constraints) c->ApplyImpulse ();

18

19 //6. Update Positions (with final ’real’ velocities)

20 }

PhysicsEngine.cpp

11

1

2 // DistanceConstraint :: ApplyImpulse

3

4 virtual void ApplyImpulse () override

5 {

6 // Compute current constraint vars based on object A/B’s

7 // position/rotation

8

9 Vector3 r1 = pnodeA ->GetOrientation (). ToMatrix3 () * relPosA;

10 Vector3 r2 = pnodeB ->GetOrientation (). ToMatrix3 () * relPosB;

11

12 //Get the global contact points in world space

13

14 Vector3 globalOnA = r1 + pnodeA ->GetPosition ();

15 Vector3 globalOnB = r2 + pnodeB ->GetPosition ();

16

17 //Get the vector between the two contact points

18

19 Vector3 ab = globalOnB - globalOnA;

20 Vector3 abn = ab;

21

22 abn.Normalise ();

23

24 // Compute the velocity of objects A and B at the point of

25 // contact

26

27 Vector3 v0 = pnodeA ->GetLinearVelocity ()

28 + Vector3 :: Cross(pnodeA ->GetAngularVelocity (), r1);

29

30 Vector3 v1 = pnodeB ->GetLinearVelocity ()

31 + Vector3 :: Cross(pnodeB ->GetAngularVelocity (), r2);

32

33 // Relative velocity in constraint direction

34 float abnVel = Vector3 ::Dot(v0 - v1 , abn);

35

36 // Compute the ’mass’ of the constraint

37 // e.g. How difficult it is to move the two objects in

38 // the direction of the constraint

39

40 float invConstraintMassLin = pnodeA ->GetInverseMass ()

41 + pnodeB ->GetInverseMass ();

42

43 float invConstraintMassRot = Vector3 ::Dot(abn ,

44 Vector3 :: Cross(pnodeA ->GetInverseInertia ()

45 * Vector3 :: Cross(r1 , abn), r1)

46 + Vector3 :: Cross(pnodeB ->GetInverseInertia ()

47 * Vector3 :: Cross(r2 , abn), r2));

48

49 float constraintMass = invConstraintMassLin + invConstraintMassRot;

50

51 if (constraintMass > 0.0f)

52 {

53 // Baumgarte Offset (Adds energy to the system to counter

54 // slight solving errors that accumulate over time - known

55 // as ’constraint drift ’)

56

57 // Experiment by commenting this out and see how it

58 // affects the constraints over time and when you manually

12

59 // move the objects apart.

60

61 // The key is to find a nice value that is small enough

62 // not to cause objects to explode but also enough to make

63 // sure all constraints /will/ be satisfied. This value

64 // (0.1) will change based on your physics objects ,

65 // timestep etc., and also how many constraints you are

66 // chaining together.

67

68 float b = 0.0f;

69

70 //-Optional -

71 float distance_offset = ab.Length () - targetLength;

72 float baumgarte_scalar = 0.1f;

73 b = -(baumgarte_scalar

74 / PhysicsEngine :: Instance()->GetDeltaTime ())

75 * distance_offset;

76

77 //-Eof Optional -

78

79 // Compute velocity impulse (jn)

80 // In order to satisfy the distance constraint we need

81 // to apply forces to ensure the relative velocity

82 // (abnVel) in the direction of the constraint is zero.

83 // So we take inverse of the current rel velocity and

84 // multiply it by how hard it will be to move the objects.

85

86 // Note: We also add in any extra energy to the system

87 // here , e.g. baumgarte (and later elasticity)

88

89 float jn = -(abnVel + b) / constraintMass;

90

91 // Apply linear velocity impulse

92

93 pnodeA ->SetLinearVelocity(pnodeA ->GetLinearVelocity ()

94 + abn * (pnodeA ->GetInverseMass () * jn));

95

96 pnodeB ->SetLinearVelocity(pnodeB ->GetLinearVelocity ()

97 - abn * (pnodeB ->GetInverseMass () * jn));

98

99 // Apply rotational velocity impulse

100

101 pnodeA ->SetAngularVelocity(pnodeA ->GetAngularVelocity ()

102 + pnodeA ->GetInverseInertia ()

103 * Vector3 :: Cross(r1 , abn * jn));

104

105 pnodeB ->SetAngularVelocity(pnodeB ->GetAngularVelocity ()

106 - pnodeB ->GetInverseInertia ()

107 * Vector3 :: Cross(r2 , abn * jn));

108 }

109 }

DistanceConstraint.h

13

